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Two-dimensional mapping of sea-ice keels with

airborne electromagnetics

Guimin Liu* and Alex Becker*

ABSTRACT

Airborne electromagnetic (AEM) equipment can be
used to sense sea ice thickness by interpreting the
AEM data to obtain the distance from the towed bird
that holds the EM system to the ice/seawater inter-
face. The ice thickness itself is obtained by subtracting
from that quantity the distance from the bird to the
upper ice surface, as determined by a laser altimeter.
To interpret AEM data acquired over sea-ice keels, we
first solve the forward problem using an integral equa-
tion approach to the Neumann boundary-value prob-
lem. In this approach, we assume that sea ice is an
insulator and that seawater is a perfect conductor.
When the ice keel is two-dimensional, the pertinent
equations can be transformed into the wavenumber
domain along the strike direction, resulting in the rapid
numerical computation of the AEM response. By
compiling numerical-model results, we constructed an
interpretation chart that relates the parameters of the
observed AEM response anomaly to the geometric
variables of the ice keel. The strike length of the ice
keel should be about three times the bird height above
the ice-water interface, so that the assumption of
two-dimensionality holds. The use of the chart has
been verified by interpreting field AEM data.

INTRODUCTION

The accurate measurement of floating-ice thickness has
been a matter of considerable interest to the scientific
community for many years (Harwood, 1971). In general, this
parameter is of great importance for global climatic studies.
On a more limited scale, it is a factor in the safe and efficient
operation of icebreakers and other shipping. Finally, on a
local scale, knowledge of the sea-ice thickness and its
distribution is of vital importance in the planning and instal-

lation of oil-well drilling platforms. Because of widespread
interest in this problem, possible means for etfecting a
remote measurement of sea-ice thickness have been the
subject of periodic reviews. All of these, including a recent
one prepared by Canpolar Consultants (1985 report prepared
for the Canadian Department of Fisheries and Oceans), have
indicated that the required measurements can be made either
with low-frequency radar or with a conventional airborne
electromagnetic (AEM) exploration system. Of the two, the
latter is clearly preferable, because the radar measurement is
susceptible to large errors where the sea ice is inhomoge-
neous (Rossiter and Lalumiere, 1988, Canpolar Associates
report prepared for Canadian Transportation Development
Center).

It appears that a confidential proposal to use airborne
electromagnetics for ice thickness determination was lodged
with the U.S. Navy as early as 1968 (Kovacs et al., 1987b).
That proposal and other studies that followed (e.g., Becker
et al., 1983; Holladay et al., 1986) clearly indicated that no
difficulties were to be anticipated in obtaining the thickness
of sea ice in areas where the ice-water interface was flat.
Kovacs et al. (1987b) reported the results of a test on
Prudhoe Bay, Alaska, which was done over an ice floe where
the ice thickness varied from about 2 to 6 m over a traverse
distance of about 250 m; the true average ice and snow
thickness of 3.62 m was recovered from the airborne data
with an accuracy of about 50 cm or roughly 15%. It is
worthwhile to note that the largest error in the ice-thickness
estimation was made over an ice keel which had an average
thickness of about 5 m. This error was clearly related to the
use of a one-dimensional (1-D) data-interpretation technique
which allowed only for very gentle topography along the
ice-water interface.

We present an interpretation method for extracting sea-ice
keel parameters from AEM data. First we develop an
efficient and workable technique for computing the AEM
system response over typical keels. The theoretical data are
then compiled in the form of a nomogram or look-up table,
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which in turn serves for the interpretation of the field results.
Since no known closed-form analytical expressions exist for
computing the electromagnetic (EM) fields of a dipolar
source over an indented conducting surface, our approach to
this problem is of necessity numerical. To begin with, we
describe some background information that is essential for
the proper use of airborne electromagnetics in sensing sea-
ice thickness.

BACKGROUND INFORMATION
Electrical properties of sea ice and seawater

The electrical conductivity of sea ice depends on its
salinity, temperature, structure, and age (Morey et al.,
1984). For both first-year and multiyear sea ice, salinity and
temperature vary with depth and thus result in a strong
vertical variation in electrical conductivity. Kovacs and
Morey (1986) also observed that in the ice above sea level,
the brine volume is very small. Below sea level, the brine
volume increases rapidly with depth, which results in a
corresponding increase of the ice conductivity. McNeill and
Hoekstra (1973) made measurements on natural sea ice at
the frequency of 18.6 kHz at Point Barrow, Alaska. Their
results showed that the conductivity of the first-year sea ice
increased from about 0.016 S/m near the ice surface to
0.2 S/m at the ice-water interface. For multiyear sea ice this
trend was the same, but the conductivity was smaller by
more than an order of magnitude. It should be noted here
that the conductivity of sea ice is relatively constant over the
audiofrequency range from dc to | MHz (Addison, 1969,
Morey et al., 1984). The electrical properties of seawater are
far better established than those of sea ice; seawater’s
electrical conductivity depends on temperature and salinity
(Bullard and Parker, 1970). For seawater under ice cover,
seawater conductivity lies in the range of 2.5-3 S/m (Kovacs
et al., 1987a).

AEM system

The AEM system considered in this paper is a conven-
tional multicoil instrument used for mineral exploration
(Fraser, 1979), which consists of a towed ““bird’” and the
system electronics which is housed in the helicopter. The
bird is a rigid fiberglass tube that contains four coil pairs, two
of which operate in a horizontal coplanar mode, while the
other two operate in a vertical coaxial mode. Each coil pair
consists of a transmitter and a receiver that are separated by
6.5 m. In operation, the bird is towed about 30 m below the
helicopter, which flies at an altitude of about 60 m, so that
the bird is roughly situated 30 m above the ice surface. Each
coil pair operates at a distinctive frequency.

The AEM system functions on the principle of EM induc-
tion. The transmitter coil is excited by a sinusoidal electric
current and produces an alternating magnetic field in space
so that currents are induced in any nearby conductors (e.g.,
seawater). These induced currents in turn produce a second-
ary magnetic field, which is sensed by the receiver coil and
recorded digitally on a magnetic tape. A part of the trans-
mitting current is fed into the recording electronics to cancel
the primary magnetic field at the receiver. Using this tech-
nique, the secondary field can be measured with high preci-

sion, so that its in-phase and quadrature components are
recorded in parts per million (ppm) of the primary magnetic
field at the receiver with a precision of about 1 ppm. These
data are used to determine the height of the bird above the
sea-water surface. At the same time, the bird altitude is
measured by a laser altimeter instailed on the bird. The ice
thickness is obtained simply from the difference in these two
quantities.

The AEM system footprint

The induced currents on a planar surface of seawater are
shown in Figure 1 for a bird height of 30 m above seawater.
In this case, for the purpose of giving a quantitative defini-
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(b) Vertical axis dipole transmitter - Co-planar loops

Fic. 1. Surficial electric currents for (a) coaxial system
(x-directed dipoles), and (b) coplanar system (z-directed
dipoles). The transmitter is 30 m above the seawater, which
is assumed to be infinitely conductive.
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tion of the footprint of an AEM system, the seawater is taken
to have an infinite conductivity and the sea ice is assumed to
be an insulator. The current strength at any point on the
water surface is equal in magnitude and orthogonal to the
horizontal magnetic field of the image source (Harrington,
1961). The induced currents for a horizontal-axis transmitter
coil are symmetrical with respect to the coil plane, and the
point of maximum current density is directly below the coil.
For a vertical-axis transmitter coil, the induced currents are
concentric circles centered at the point directly below the
coil center. At the center of the current circles, the current
density is zero; the current density peaks along a circle
centered below the coil center with a radius of half the bird
height over the sea-water surface,

Now, for ease of numerical computation, let us define the
footprint of an AEM system as the side of a square surface,
centered directly below the transmitter coil, that contains
the induced currents which account for 90% of the observed
secondary magnetic field. Obviously, for this definition, the
footprint depends on the system coil configuration and the
bird height. The secondary field from currents within a given
square is computed by numerical integration over the
square.

The relative contributions to the secondary magnetic field
from square regions of different sizes centered below the
transmitter are plotted in Figure 2. The abscissa indicates the
side length (s) of the square in terms of the bird height (k).
For the horizontal axis (x-directed) transmitter, the contri-
bution grows rapidly with increasing square size, since the
surface currents are highly concentrated below the square
(cf., Figure 1). The contribution overshoots the 1009 mark
and then decreases because the contributions from the
currents outside the square are negative. The footprint of the
coaxial system is a square with a side length of 1.35 times the
flight height. For a bird height of 30 m, it is a square with 40
m sides. For the coplanar system, the relative contribution
grows more slowly with increasing square size than in the
coaxial case but increases steadily to reach the 1009% mark.
The footprint for this system is 3.73 times the flight height or
112 m; it is much larger than that of the coaxial system
because, the currents are distributed in a larger area. In

Contrilution (%)

Square size, s’h

Fic. 2. Contributior} to the system response from induced
currents as a function of square size. The abscissa is the
square side length s normalized by the bird height A.

other words, the resolution of the coaxial system along the
survey line is better than that of the coplanar system.

Data interpretation for a 1-D model

The goal of data interpretation is to recover the height of
the AEM bird over the seawater surface. Subsequently, the
ice thickness can be obtained by subtracting the bird altitude
above the upper ice surface from this distance. If the
ice-water interface relief is mild, a 1-D model can be used to
interpret the AEM data. The conventional method for 1-D
interpretation relies on the use of an Argand diagram (Grant
and West, 1965, p. 550). Since the AEM system response
varies with the frequency and with the seawater conductiv-
ity, as well as with the flight height, the in-phase and
quadrature components of the secondary field are plotted in
the form of a nomogram with the conductivity-frequency
product and altitude as parameters. Given a measurement of
the secondary magnetic field, the bird altitude above the
seawater can be readily found from the diagram.

Although this method of data interpretation yields satis-
factory values of average ice thickness, it fails to indicate
accurately the local ice-keel topography (Kovacs et al.,
1987b). The routine interpretation of data acquired in areas
of rough ice topography requires at least a 2-D approach
based on a rapid method for computing the EM response of
an irregular ice-water interface. Finite-element and finite-
difference methods, which have been very successfully
applied to similar problems (L.ee and Morrison, 1985; Stoyer
and Greenfield, 1976), are of limited use here because of the
associated prohibitive computing costs. In this study, we
first develop the required high-speed computational tech-
nique, which is used to assemble numerical results needed
for the construction of nomograms. These, in turn, are used
to interpret AEM field data.

THE FORWARD PROBLEM

Two assumptions are needed to create an algorithm for
rapidly computing the AEM system response over irregular
sea ice: (1) sea ice is transparent to the EM wave and (2)
seawater can be regarded as a perfect conductor. The first
assumption is valid in the audiofrequency range, since sea
ice is very resistive. The second assumption is reasonable
when the system frequency is greater than 30 kHz, so that
the skin depth in the seawater is small compared to the
ice-keel dimensions. It is shown in the next section, how-
ever, that the algorithm using this assumption can also be
used for interpreting lower frequency data. The algorithm
itself is based on an integral solution of the Neumann
boundary-value problem (Graham, 1980) and can be easily
implemented using standard numerical methods. For the 2-D
case where the ice keel is assumed to have an infinite strike
length, the pertinent equations can be transformed into the
wavenumber domain by taking a Fourier transform in the
strike direction. Once the field is obtained for a range of
wavenumbers, the inverse Fourier transform gives the re-
quired solution in the space domain. This transformation
technique considerably improves the computational speed
for the 2-D case.
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Neumann formulation for the general case

Consider an alternating magnetic dipole (current loop)
source T located in free space as shown in Figure 3. The
source is positioned, with arbitrary orientation, over a
homogeneous perfectly conductive medium with 3-D surface
relief. Electric currents are induced on the surface of the
medium, and they give rise to a sccondary magnetic field H
in free space. The objective here is to calculate this quantity
at any point above the surface §.

In the case examined, the height of the source above the
medium is small compared to the wavelength, and the
observation point is close to the source, so that the EM field
is quasi-static. In free space, V X H; = 0; and we may relate
H; to a scalar magnetic potential ¢,

H; = -V¢. (M
We also have V - H; = 0 and, correspondingly,
Vi = 0. 2)

Since the lower medium is assumed fo be infinitely conduc-
tive, the normal component of the total magnetic field must
vanish on §; i.e.,

Hpn + Hsn =0 (3)

Here H,, and H,, are the normal components of the
primary and secondary nignetic fieids, respectiveiy. Hence,
ad

an | = —Hl; = Hpl,. (4)

The Laplace equation (2) and the boundary condition (4)
constitute the Neumann boundary-value problem. That is,
given the normal derivative of the potential on a surface §,
we wish to calculate the potential itself above §. Once ¢ is
found, H; may be calculated from equation (1).

The solution to the Neumann problem outside a closed
surface can be expressed as the potential of a fictitious
surface charge layer (Graham, 1980)

£P)
¢@:f——m B
S

Fpo

where &(P) is a fictitious magnetic charge density function
and rpg is the distance between points P and O (see Figure

T
* o

Conductor

Fi6. 3. Model for the Neumann boundary-value problem.

3). The charge density on § satisfies a Fredholm integral
equation of the second kind:

i )
(W——famfgﬁiﬂ,m)
2w s

'epm

I
g(M) = _; Hpn

where {rpy, n) is the angle between rpy (the vector connect-
ing P to M) and n (the unit normal vector at M). In our
problem, the surface § extends to infinity. When rpy = 0,
the integration kernel has a singularity; but this presents no
difficulty in the numerical computation because it is integra-
ble in the sense of its Cauchy principal value.

To solve the integral equation (6), we use the successive
approximation method {Mikhlin, 1964). The initial solution
(first iteration) is assumed to be the first term on the
right-hand side of equation (6); i.e.,

1
£(M) Py H,,(M).
We then use this value in the integral in the equation to
compute an improved value of &M), and so on. Once the
charge density is known, the secondary magnetic field can be
calculated from the following equation, which is obtained by
combining equations (1) and (5):

[ EP)

Hy= | —3—rpo ds:
Js Fpo

Here rpq is the vector connecting P to O. In the case where
S forms a plane, the solution obtained this way can be
proven to be identical to that derived from the image
principle (Liu, 1989).

Thus, under the quasi-static field assumption, the electro-
dynamic problem is reduced to a potential-field problem.
Frequency is not a parameter, since we assumed perfectly
conductive seawater. In fact, this assumption is equivalent
to considering the case of the inductive limit. In the compu-
tation, the fictitious charge distribution on the surface of the
conductive medium is computed first. The secondary mag-
netic field in free space is then found by summing the
contributions from the individual charges, a process analo-
gous 10 the integral-equation approach for solving the EM
scattering problem (Parry and Ward, 1971). In that ap-
proach, the equivalent electric and magnetic currents are
first sought and the EM fields are then obtained by integrat-
ing their contributions.

N
~—

The two-dimensional case

The ice bottom topography is 2-D when the strike length of
the ice keel is much greater than its depth extent and the
height of the AEM system above it. Then the relief of the
interface is only a function of x; i.e., #(x, ¥) = #(x) and the
potential of the secondary magnetic field is given by

$(x, v, 2)

Ex', y YN/ 1 + [dir(x)dx']?

:Lc e \/(x—x')2+(y—y')2+[z—t(x')]2

dx' dy'.

8)
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Writing the 2-D equivalent of equation (6), we find that the
surface charge density &(x, y) satisfies

1
E(xa }’) = —'2_ Hpn(xs y)
1

1 40 [+o .
_Efm f_x &x', ¥

(x — xYdt(x)dx — [H{x) — H{x")]
X 9 pl
{(x x4+ (y — ¥+ [Hx) — (x|}

{ 1+ [dt(x’)/dx']z} 172
X dx' dy'. 9

1+ [dr(x)/dx]?

In equations (8) and (9) the integral with regard to y' is a
convolution of the charge density with a geometric kernel.
Taking the Fourier transform of both sides, we get

+x .
&lx, ky, 2) =f o(x, y, 2)e % dy

=2 f e, k)\/1+ [T Kolplk, ) dx

(10)
and
1
E(x, ky) = o Hp,(x, k)
1 +oo
- f Ex', k) f(x, x', ky) dx’, an
2w )
with
1+ [de(x)dx' 1) 2
’ ’7 k =
Tl k) 2{ 1+ [dix)/dx]? }
(x —x"dt(x)dx — [H{x) — t{x")]
X
pV
X Wyt Ky(p'lhey ). 12)

In the above equations,

k, = angular wavenumber in the y direction,
p=Vx ~ x)" + [z — 1)),
p'=Vix — x)° + [1x) — tx)),
Ko(plk, )= modified Bessel function of zeroth order,
second kind, and

K (plk, )= modified Bessel function of first order, second
kind.

We have thus simplified the problem by decomposing a 2-D
integral equation into a set of 1-D integral equations. For a
dipolar source, the normal component of the primary mag-
netic field H,,,(x, y) can be transformed analytically into the
wavenumber domain.

Integral equation (11) can be solved for £(x, ) using a
successive approximation method identical to the one sug-

gested above for the general case. This needs to be done at
a number of positive &, harmonics (including k, = 0). The
values of £(x, k,) for negative k, harmonics are easily
obtained by noting the symmetry of this function about
k, =0.

Once the charge density is known, the x and z components
of the secondary magnetic field may be computed directly
from the following equations:

ab(x, ky, z)
HA'X(x9 kva P=———
l dx
—+x
= f {x —x")glx, x', ky, 2) dx' (13)
and
ab(x, ky, 2)
Ho(x, ky,g)=——""
l 3z
+x
=2 f [z —tx)glx, x', ky, 2) dx’,  (14)
where

Ik,y|
glx, X', ky, 2 = E(x', k)\/1 + [di(x)dx'}? 7:— Ky(plky ).

Once the secondary magnetic field is available in the wave-
number domain, its inverse Fourier transform yields the
desired result in the space domain.

Numerical details

(a) General case.—The computational domain is chosen to
be an area on the surface S, centered directly below the
transmitter. The projection of this domain onto the XY plane
is a square whose size depends on the elevation of the
system. From numerical experiments with a model defined
by a flat seawater surface, we find that, to obtain an accuracy
of 1%, the length of the side of the square must be greater
than six times the bird height. As the AEM system advances,
we also translate the computational domain so that its center
remains directly below the transmitter. In this way, the size
of the computational domain is minimized. Next, the com-
putational domain is discretized into small elements. For
simplicity we use constant sampling intervals Ax and Ay
along the x and y directions, respectively. Usually we set
Ax = Ay = 3 m. For a few narrow keels, however, we chose
Ax = 1.5 m. The grid mesh is usually 60 x 60, and each
element surface is considered to be flat.

Integral equation (6) is first solved for the charge density
£(M) using the successive approximation method outlined
previously. The initial solution is assumed to be the first term
on the right-hand side. We then use this value in the integral
in the equation to compute an improved value of (M), and
so on. This process converges quickly, and convergence is
usually achieved within three iterations. The integral in
equation (6) is computed by summing the contributions of
every element of the surface. Inside each element, the
charge density &x’, y’) is taken to be constant. On each
element within five sampling intervals from the point
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M(x, y), the element integral is carried out analytically in the
y-direction first and then numerically integrated in the x-
direction using nine-point Gaussian quadrature (Press et al.,
1986). The contribution of the singular element, where the
integration point P(x’, y') coincides with the observation
point M(x, y), is zero, since n - r = 0 on that flat element
surface. For elements five sampling intervals away from the
point M(x, y), the element integral is calculated by multiply-
ing the charge density with the value of the kernel at the
midpoint of the element.

Once the charge density is obtained, the secondary mag-
netic field can be computed from equation (7) by summing
the contributions of the charges in each element. In this
calculation, the integration kernel in equation (7) can be
taken as constant in each element, because the receiver is far
from the integration point so that the kernel is relatively
invariant.

The computation for each source position is done inde-
pendently. Ideally, to increase the computational efficiency,
the computed kernel values of equation (6) should be stored
in the computer memory so that their recalculation for
different source positions can be avoided. However, this is
not done readily, since the required memory (about 40
megabytes) is very large. When the computation is done on
an IBM 3090, a 20-point profile of the AEM system response
requires about 15 minutes of CPU time.

(b) The 2-D keel.—For a 2-D keel, equation (11) is solved
independently for each wavenumber using the successive
approximation method. Fifteen such solutions are necessary
for good accuracy. The wavenumber k, is sampled on a
logarithmic scale with five points per decade. Except for its
initial value of 0, &, ranges from 1073 to 1. For any k, value,
the ice-water interface is sampled at Ax = 3 m, and 80
elements are used for better accuracy than is possible in the
3-D case. Unlike the 3-D case, however, most values of the
integration kernel can be stored in the computer memory for
use in the computation at the next source point, so that only
a few new values arising from the translation of the compu-
tational domain need to be calculated. This greatly improves
the computational efficiency.

Once the charge density is obtained, the horizontal and
vertical components of the secondary magnetic field in &,
space can be computed from equations (13) and (14). We
then need to take the inverse Fourier transform to get the
required final results. Prior to performing the inverse Fourier
transform, however, the field valueys avuilable at fogarithmi-
cally spaced points in k&, space need to be interpolated to
obtain a uniformly spaced set of k, values by using cubic-
spline interpolation. The computation of the AEM response
along a 20 point profile takes only 10 s of CPU time on the
IBM 3090. This is faster by two orders of magnitude than the
general case of a 3-D ice keel discussed above.

Computational check

The numerical solution was checked on a laboratory scale
model. Aluminum was used to simulate the infinitely con-
ductive medium at a linear scale of 1:250. A model AEM
system was built at the same scale and was ““flown’” at a field
height of 10 m. The system consisted of a coplanar, vertical-

axis transmitter and receiver which operated at 6 kHz. It can
be shown, with the use of the well-known EM scale-model
relationships (Grant and West, 1965, p. 481), that the choice
of linear scale, modeling material, and operating frequency
corresponds to a 1 MHz field system flying over the seawa-
ter.

Details of the model are shown in Figure 4, which also
exhibits the traversed feature. Note the threefold exaggera-
tion of the vertical scale. The cross-section of the indented
surface is a Gaussian curve that simulates a smooth ice keel.
Its relief is given by

X2
Hx)=A exp <—m), (15)

where x = distance from the keel center line, A = maximum
keel draft, and W = keel width at half-draft. The shape of the
keel is invariant along the strike direction. For the simulated
field model, A and W were taken to be 3.4 m and 21 m,
respectively. We chose this type of surface because it is
simply defined by only two input parameters. Furthermore,
it is easy  adjust these parameters to simuiate a variety of
symmetric sea-ice keels. The measurements and numerical
calculation results for this model are displayed in Figure 5,
which shows an excellent agreement between the numerical
and experimental data. Here the system response is plotted
at a point located midway between the transmitter and
receiver.

DATA INTERPRETATION

We now define the parameters that describe the AEM
anomaly associated with a 2-D ice keel and demonstrate how
they change with the ice-keel shape. From the numerical
model data, we can construct an interpretation chart that
relates the anomaly parameters to the keel parameters. Field
data are then interpreted using this chart. Finally, the effects
of finite strike length are examined to find the limitations of
the 2-D interpretation.

AEM system response for typical ice keels

In the neighborhood of an ice keel, the AEM system
response shows an excursion from the background level,

T T T T T
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FiG. 4. Coplanar system over a model ice keel. This model
was built in the laborafory at a linear scale of 1:250. A =
maximum keel draft; W = keel width.
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which is called the ‘‘anomaly.”” With reference to Figure 5,
let us define the ‘‘anomaly amplitude’ (labeled C) to be the
maximum deviation of the AEM response from the absolute
value of the observed background level (Iabeled B). In order
to characterize the shape of the observed anomaly, we define
the anomaly width d to be the width of the anomaly at
one-half of its maximum value. The anomaly amplitude and’
width depend not only on the geometry of the ice keel but
also on the bird height above the ice-water interface. In
order to minimize the influence of factors other than keel
geometry, we also use the ‘‘normalized anomaly ampli-
tude,”” which is the anomaly amplitude normalized by the
background level (i.e., ratio C/B), and the ‘‘normalized
anomaly width,”” which is the anomaly width normalized by
the average bird height above the seawater surface.

We now examine the AEM response for 2-D sea-ice keels
as a function of their size and shape. For these calculations,
the EM system has a coil separation of 6.5 m and is flown
25 m above the flat upper-ice surface. With the exception of
the zone containing the keel, the sea ice is 5 m thick and is
assumed to have negligible electrical conductivity, while the
seawater is taken to be infinitely conductive. Numerical
results are then obtained for both the coaxial and the
coplanar systems. The keel is assumed to have the shape of
a Gaussian curve shown in Figure 4 and defined by equation
(15).

Figure 6 shows the coaxial and coplanar system responses
for two different keels with parameters A = 12 m and W = 28
m and 14 m. Here H, is the coaxial system response, while
H. is the coplanar system response. Each system response
shows a large anomaly related to the model ice keels. For a
keel width W of 28 m, the coaxial anomaly amplitude is
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FiG. 5. Comparison of scale-model measurements and the
numerical solution for the model shown in Figure 4.
B = background response; C = anomaly amplitude. 1% =
104 ppm.

205 ppm, which is 35% of the background value. The
anomaly width d in this case is 45 m. When the keel width is
halved to 14 m while the other parameters are kept fixed, the
coaxial system anomaly is reduced significantly. Here the
anomaly amplitude decreases by 37% to 130 ppm and the
anomaly width decreases by 33% to 30 m. From a compar-
ison of the coaxiai and cuplanaranomalies (Figure-6), we-can-
see that the coplanar system response shows similar behav-
ior, but note that the coplanar system anomalies are much
broader.

To demonstrate the failure of 1-D interpretation, we
interpreted the synthetic 130 ppm coaxial anomaly using the
Argand diagram method. The bird height was found to be 33
m, but since the bird height over the flat part of the seawater
surface was 30 m, the interpreted keel draft is then 3 m. The
actual keel draft at this point, however, is 12 m. In this case,
the interpreted thickness is only 25% of the model ice
thickness.

Next, the keel draft A is halved to 6 m, while the keel
width is kept constant at W = 28 m. The corresponding
system response is shown in Figure 7. In this case, the
coaxial anomaly amplitude contracts by 29%, but the corre-
sponding decrease in the anomaly width is only 8%. Simi-
larly, for the coplanar system, the anomaly amplitude drops
by 37%, but the anomaly width decreases by only 3%. Thus,
we find that the anomaly amplitude is sensitive to both the
thickness and the width of the keel. It is essentially a
function of the area of the cross-section of the keel. In
contrast, the anomaly width is related primarily to the keel
width. It is much less sensitive to the keel thickness as long
as the shape of the keel does not change.
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F1G. 6. System response (top) for model ice keels (bottom)
with parameters A = 12 m, W = 14 m (dashed lines) and W
= 28 m (solid lines). H, and H, indicate the coaxial and
coplanar system responses, respectively.
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Interpretation chart

To interpret field data, we need a strategy to relate the
observed EM anomaly to the keel geometry. [n terms of the
smooth keel used in our analysis, we wish to estimate the
two keel parameters A and W from the observed anomaly
parameters. This can be done with the aid of a nomogram
that is constructed from a complete set of normalized
anomaly-amplitude and anomaly-width values computed for
a variety of model keels defined by a systematic set of A and
W parameters. The required interpretation chart for the
coaxial system response is shown in Figure 8. The vertical
axis of the chart defines the normalized anomaly amplitude
C/B (cf., Figure 5), while the horizontal axis represents the
normalized anomaly width d/h. The two sets of parametric
curves intersect each other at good angles and are well
separated. The solid curves correspond to constant values of
the draft A, while the dashed ones are related to constant
values of keel width W. The displayed values of a and w are
the keel draft A and width W normalized by 4, the average
bird height above the seawater surface away from the keel.
As shown, the normalized anomaly amplitude decreases
with the decrease of the keel draft and keel width. In fact,
the line for a = 0.8 rapidly tends to zero and intersects the
lines @ = 0.4, a = 0.2, etc. For purposes of clarity, this
overlap is not shown in Figure 8. It does not pose a serious
problem in practice, since such narrow and sharp keels are
highly improbable. Although the interpretation chart is con-
structed for # = 30 m, it can be used for the range / =
25 m—50 m with an error less than =4%. A parallel analysis
can also be carried out for the coplanar system (Liu, 1989).
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FiG. 7. System response (top) for model ice keels (bottom)
with parameters A = 6 m (dashed lines) and A = 12 m (solid
lines), W = 28 m. H, and H, indicate the coaxial and
coplanar system responses, respectively.

Interpretation of field data

As pointed out previously, the interpretation chart shown
in Figure 8 is constructed using the perfect-conductor model.
In this case, the system response has only an in-phase
component. However, it has been shown that the anomaly
shape for data above 2 kHz is close to that in the inductive
limit (Liu, 1989). This makes the interpretation chart shown
in Figure 8 applicable for a wide range of frequencies.
However, note that the lower the frequency, the smaller the
normalized anomaly amplitude, resulting in an underestima-
tion of the ice-keel draft; this error is less than 10% for data
above 2 kHz (Liu, 1989).

We now consider AEM field data collected over an ice
keel in Prudhoe Bay in 1985 (Kovacs et al., 1987b). Part of
the 4160 Hz (coaxial) data for line F6L3 are shown in Figure
9. Note that the in-phase and quadrature responses are
plotted at different scales. The altitude is the distance from
the system boom to the ice surface measured by a laser
altimeter. As expected, the data are highly correlated with
altitude. We first interpreted the data using a 1-D technique
with a result that shows a 3.09 m average ice thickness but
gives no indication of the ice keel (solid squares in Figure
9¢). This result confirms an independent I-D analysis of the
same data performed by Kovacs et al. (1987b). We note,
however, that an anomaly in the system response can be
seen between fiducials 2668-2675. Assuming that it is not
related to the small altitude variation in that area, we find
that the anomaly width d is 32 m and that the normalized
anomaly amplitude is 6.5%. Since % is about 39 m (altitude +
average ice thickness), the normalized width d/h = 0.82. The
corresponding point is found in the interpretation chart
(point D in Figure 8), which gives a = 0.08 and w = (.42,
Hence, A =a X A =308 m, W =w X 4 =162 m. The
interpreted keel is plotted symmetrically about the point of
maximum anomaly in Figure 9¢ (dashed line). The solid line
in that illustration indicates the average of the drill-hole
measurements made along three parallel lines 11.5 m apart
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Fi16. 8. Interpretation chart for coaxial system response. a
and w are the maximum keel draft and the keel width
nmormalized by the bird height A.
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beneath the flight path. As we can see, the interpreted keel is
a good approximation to the existing feature.

Effects of keel strike extent

In order to define one of the limitations of the 2-D
interpretation method, it is worthwhile to consider the
effects of finite keel strike extent. To do this, we compute the
AEM anomaly for a 3-D Gaussian keel whose draft is given
by

7 2 2 N\

2
t(x, y) = A exp (‘

X2
e : 16
0.361 L7 0.361 W2) (e

Here the keel strike extent L is defined in the same way that
we previously defined the keel width W. To demonstrate the
influence of this parameter, we examine its effect on a
shallow keel described by A = 3 m, W = 24 m, and a series
of L values which range from 12 m to 96 m. The results of
these calculations for a central profile flown at 25 m above
the ice are shown in Figure 10. For the purpose of compar-
ison, it also includes the numerical results for an infinitely
long (2-D) keel.

It appears from the results shown in Figure 10 that a keel
strike of about 96 m or about three times the bird altitude
over the ice-water interface is required if the 2-D interpre-
tation method is to be used with an error of less than 10%.
Surprisingly, this conclusion holds for both the coaxial and
the coplanar systems, even though their footprints differ
widely from each other.
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FiG. 9. Prudhoe Bay field data and interpreted result. (a) Bird
altitude, (b) 4160 Hz coaxial system data, and (c) interpreted
and measured. keel outline.

CONCLUSIONS

From the distribution of the induced currents on the
seawater surface, we see that the horizontal dipole transmit-
ter used in the coaxial system produces a more concentrated
current pattern than does the coplanar system. This results
in a smaller footprint for the coaxial system; hence, the
coaxial system configuration may have better resolution than
its coplanar equivalent. Nevertheless, both systems are
equally sensitive to ice-keel strike extent.
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Fig. 10. System response for 3-D model ice keels with
parameters A = 3 m and W = 24 m; bird height above upper
ice surface = 25 m. (a) Coplanar system response, (b)
an}xial system response, and (¢) cross-section of the ice
keel..
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The problem of simulating AEM data acquired in areas of
sea-ice pressure ridges and keels is best formulated as a
Neumann boundary-value problem and is solved using the
integral equation approach. For 2-D ice keels, the pertinent
equations can be transformed into the wavenumber domain
by taking the Fourier transform along the strike direction.
The resultant equations admit a very efficient numerical
solution.

The AEM anomaly size is a function of both the thickness
and the width of the keel, and thus essentially depends on
the area of the keel’s cross-section. In contrast, the anomaly
width is related primarily to the keel width. It is much less
sensitive to the keel draft, as long as the shape of the keel
remains invariant. Although the anomaly size can be large,
the 1-D model hypothesis is inadequate for the interpretation
of the data collected over a typical ice keel.

By compiling numerical data for 2-D Gaussian model
keels, we have constructed an interpretation chart. When
the keel strike length is more than three times the flight
height of the AEM system, the chart can be used to estimate
accurately the size and shape of an ice keel from the
associated AEM anomaly. Note here that, to apply the chart
interpretation, the variation of the system altitude should be
smaller than the feature one is detecting. Although the chart
is constructed from model data obtained in the inductive
limit, it can be used to interpret lower frequency data,
because the anomaly shape and relative amplitude are not
overly dependent on the frequency once that frequency is
chosen to lie in the upper audio range.
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